Interferometric Imaging through Cluttered Media Using Electromagnetic Interferometry on a Hardware-Accelerated High-Performance Cluster

Esam El-Araby, Ozlem Kilic, and Vinh Dang
Department of Electrical Engineering and Computer Sciences
aly@cua.edu, kilic@cua.edu, and 13dang@cardinalmail.cua.edu

Introduction

- Motivation
 - Detecting concealed objects such as weapons behind cluttered media is essential for security applications.
 - Terahertz frequencies are usually employed for imaging in security checkpoints due to their safe non-ionizing properties for humans and their ability to penetrate clothing while still reflecting off metallic objects [1],[2].
 - Interferometric images of target objects are constructed based on the complex correlation function of the received electric fields from the medium of interest at each pair combination of sensors in a detector array.
 - This imaging technique requires intensive computations which make it impractical for real-time security applications.

- Objectives and Approach
 - Provide a first effort, to the best of our knowledge, to efficiently implement and achieve a high performance of terahertz interferometric imaging of targets behind cluttered media using HPC platforms.
 - Explore the capabilities of a 13-node GPU-accelerated cluster using CUDA and MV APICH2 environments.
 - Maximize system resource utilization through efficient load balancing.

Interferometric Imaging through Cluttered Media

- Interferometric images are constructed using complex correlations of electric field intensities obtained from all possible pair combinations in a detector array [3],[4].
- The entire image is equally divided into many partial images and processed by the corresponding computing nodes.
- GPUs do all computations.
- CPU: data transfer and work distribution.

where \(\tau \) : the time average of the electric field intensity detected for each pixel.

- Target behind cluttered media: the electric field received at detectors have three contributions: direct scattering, indirect scattering, and volume scattering, and volume scattering.

Simulation Setup

- Detector and geometry:
 - Fixed distance-to-detector array
 - Frequency: 600 GHz

Detector Geometry

Target Image

Metrics for Evaluation

- Total execution time:
 - Speedup: performance gain when using multiple GPU-accelerated computing nodes in reference to a single GPU-based mode.
 - Scalability: normalized speedup.
 - Hardware efficiency: compares the execution time measured through experiments to the expected theoretical performance.

Experimental Results

- Metrics for Evaluation:
 - System configuration:
 - CPU/GPU Cluster
 - GPU Cluster
 - Application parameters:
 - Number of detectors
 - Detector geometry
 - Object geometry
 - Clutter media properties:
 - Particle size
 - Particle type
 - Shape
 - Target object:
 - Number of targets
 - Distance-to-detector array
 - Signal:
 - Frequency: 600 GHz

- Scanning characteristics for larger cluster configurations.

Conclusions

- As a first effort, to the best of our knowledge, terahertz interferometric imaging through cluttered media has been efficiently implemented using a GPU-accelerated cluster.
- The GPU implementation with efficient load balancing outperforms that of CPU implementations in terms of speedup and scalability.
- The experimental results also show that our implementations have favorable scalability features for larger cluster configurations.

References